Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 896: 166401, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37597566

RESUMO

The world's population is continuously increasing; therefore, food availability will be one of the major concerns of our future. In addition to that, many practices and products used, such as pesticides and fertilizers have been shown harmful to the environment and human health and are assumed as being one of the main factors responsible for the loss of biodiversity. Also, climate change could agravate the problem since it causes unpredictable variation of local and regional climate conditions,which frequently favor the growth of diseases, pathogens and pest growth. The use of natural products, like essential oils, plant extracts, or substances of microbial-origin in combination with nanotechnology is one suitable way to outgrow this problem. The most often employed natural products in research studies to date include pyrethrum extract, neem oil, and various essential oils, which when enclosed shown increased resistance to environmental factors. They also demonstrated insecticidal, antibacterial, and fungicidal properties. However, in order to truly determine if these products, despite being natural, would be hazardous or not, testing in non-target organisms, which are rare, must start to become a common practice. Therefore, this review aims to present the existing literature concerning nanoformulations of biopesticides and a standard definition for nanobiopesticides, their synthesis methods and their possible ecotoxicological impacts, while discussing the regulatory aspects regarding their authorization and commercialization. As a result of this, you will find a critical analysis in this reading. The most obvious findings are that i) there are insufficient reliable ecotoxicological data for risk assessment purposes and to establish safety doses; and ii) the requirements for registration and authorization of these new products are not as straightforward as those for synthetic chemicals and take a lot of time, which is a major challenge/limitation in terms of the goals set by the Farm to Fork initiative.


Assuntos
Produtos Biológicos , Praguicidas , Humanos , Agricultura , Fazendas , Praguicidas/toxicidade , Antibacterianos
2.
Phytochemistry ; 187: 112714, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33845406

RESUMO

The Apiaceae Lindl. (=Umbelliferae Juss.), which includes several economical important vegetables, herbs, and spices, is one of the most numerous plant family. Umbelliferous crops (namely anise, fennel, carrot, coriander, parsley, etc.) are also valuable sources of botanical flavoring agents and fragrances. In addition, Apiaceae species yield a wide variety of distinctive specialized metabolites (i.e, volatile phenylpropanoids, furanocoumarins, sesquiterpene coumarins, polyacetylenes, and phthalides), some of them been described as uncommon natural phytochemicals exclusive of the family, which offers a great potential for bioprospection. Numerous studies have pointed out the outstanding biological activity of extracts and several classes of phytochemicals from Apiaceae species. Emphasis has been given to essential oils (EOs) and their constituents activities, most likely because this type of plant added value product benefits from a larger acceptance and application potential in integrated pest management (IPM) and integrated vector management (IVM) programs. Several species of the family offer a variety of unique compounds with great potential as biopesticidal and/or synergizing agents. Investigations covering their activity toward agricultural pests and phytopathogens have increased in the last years, nevertheless the interest remains strongly focus on arthropod species, predominantly those acting as vectors of human diseases. From our survey, it is patent the gap of knowledge concerning the potential molluscicidal properties of Apiaceae extracts/phytochemicals, as well as their herbicidal activities against invasive plant species. In this review, we propose to highlight the potential of Apiaceae species as suitable sources of bioactive phytochemicals with great relevance within the frame of plant-based pesticides R&D, and will discuss their applicability in real-world scenarios considering the recent developments regarding the design of stable formulations incorporating Apiaceae bioactive products. We expect that this review will encourage researchers to consider undervalued Apiaceae species as alternative sources of bioactive compounds and will give a contribute to the field by suggesting new research topics.


Assuntos
Apiaceae , Praguicidas , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Plantas , Poli-Inos
3.
Chemosphere ; 238: 124572, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31422312

RESUMO

The wastewaters from distilleries of winemaking by-products, a scarcely studied type of vinasse, were treated by white-rot fungal strains from species Irpex lacteus, Ganoderma resinaceum, Trametes versicolor, Phlebia rufa and Bjerkandera adusta. The main objectives of this study were to evaluate fungal performance during vinasse biodegradation, their enzyme patterns and ecotoxicity evolution throughout treatment. Despite all strains were able to promote strong (>80%) dephenolization and reduction of total organic carbon (TOC), P. rufa was less affected by vinasse toxicity and exhibit better decolorization. In batch cultures at 28 °C and pH 4.0, the first phase of P. rufa biodegradation kinetics was characterized by strong metabolic activity with simultaneous depletion of TOC, phenolics and sugars. The main events of second phase are the increase of peroxidases production after the peak of laccase activity, and strong color removal. At the end of treatment, it was observed highly significant (p < 0.001) abatement of pollution parameters (83-100% removal). Since water reclamation and reuse for e.g. crop irrigation is a priority issue, vinasse ecotoxicity was assessed with bioindicators representing three different phylogenetic and trophic levels: a marine bacterium (Aliivibrio fischeri), a freshwater microcrustacean (Daphnia magna) and a dicotyledonous macrophyte (Lepidium sativum). It was observed significant (p < 0.05) reduction of initial vinasse toxicity, as evaluated by these bioindicators, deserving special mention an almost complete phytotoxicity elimination.


Assuntos
Aliivibrio fischeri/crescimento & desenvolvimento , Coriolaceae/metabolismo , Daphnia/crescimento & desenvolvimento , Lepidium sativum/crescimento & desenvolvimento , Polyporales/metabolismo , Trametes/metabolismo , Águas Residuárias/química , Águas Residuárias/toxicidade , Aliivibrio fischeri/metabolismo , Animais , Biodegradação Ambiental , Daphnia/metabolismo , Destilação , Biomarcadores Ambientais/efeitos dos fármacos , Lacase/metabolismo , Lepidium sativum/metabolismo , Peroxidases/metabolismo , Fenóis/metabolismo , Filogenia
4.
Ecotoxicol Environ Saf ; 183: 109493, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31376802

RESUMO

Vinasses obtained from the distillation of winemaking by-products (WDV) are complex effluents with variable physicochemical properties. Frequently, WDVs are used to irrigate agricultural soil, and/or discharged into aquatic bodies, which may result in serious environmental pollution, due to the presence of organic acids and recalcitrant compounds (polyphenols, tannins and metals). The present study aimed to evaluate the toxicity impact of an untreated WDV on terrestrial and aquatic organisms, at different levels of biological organization. The effluent was collected at the distillation column exit and characterized according to several physicochemical properties. The WDV potential phytotoxicity was assessed by germination inhibition assays on six agricultural crops, and its acute toxicity was assessed on Aliivibrio fisheri (microtox assay), Daphnia magna neonates (freshwater crustacean), and zebrafish Danio rerio (fish embryo toxicity test, FET). The WDV presented a low pH (3.88), high levels of electrical conductivity, ECond (6.36 dS m-1) and salinity (3.3 ppt), besides high level of potassium (2.1 g L-1) and organic compounds (TOC = 17.7 g L-1), namely polyphenols (1.7 g L-1). The diluted WDV displayed variable inhibitory effects on the plant endpoints (percentage of inhibition of germination and radicle elongation and germination index). Overall, plants' susceptibility to increasing concentrations of WDV were differential (onion ≈ garden cress ≥ tomato > lettuce > maize > green beans) and the germination index EC50 varied from 10.9 to 64.4% v/v. Also, the acute negative effects toward aquatic organisms were determined, decreasing from the more complex organism to the simpler one: zebrafish embryos (96 h-LC50 = 0.34% v/v)>D. magna (48 h-LC50 = 4.8% v/v)>A. fisheri (30min-EC50 = 7.0% v/v). In conclusion, the findings suggest that WDVs might have a high toxicological impact on both terrestrial plants and aquatic organisms, even at high dilution levels, reinforcing the need for appropriate treatments before considering its discharge or reuse.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Resíduos Industriais , Plantas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Vinho , Animais , Organismos Aquáticos/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Dose Letal Mediana , Compostos Orgânicos/química , Plantas/classificação , Testes de Toxicidade , Poluentes Químicos da Água/química
5.
J Agric Food Chem ; 61(32): 7661-72, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23865423

RESUMO

Essential oils (EOs) from four Apiaceae species and 11 pure compounds were evaluated for their antifeedant, growth inhibitory, and insecticidal activities against Pseudaletia unipuncta (Lepidoptera: Noctuidae) fourth-instar larvae. EOs from Foeniculum vulgare subsp. vulgare var. vulgare, Anethum graveolens , Petroselinum crispum , and Cuminum cyminum were characterized by gas-chromatography (GC) and mass spectrometry. Anti-insect activity varied according to plant specie/composition, type, and exposure period. EOs from P. crispum and A. graveolens fruits, trans-anethole and cuminaldehyde, exerted acute effects on larvae feeding and growth (FDI and GI > 70%). A. graveolens , C. cyminum , and F. vulgare EOs and some of their constituents were effective by fumigation (≥ 80%). Satisfactory contact toxicities (>70%) were observed for five compounds and all EOs, except F. vulgare EOs, when tested by the filter paper impregnation method. For the most active EOs/compounds, dose-dependent toxicity was determined and inverse relationships of LC50 with time were established.


Assuntos
Apiaceae/química , Inseticidas/farmacologia , Lepidópteros/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Animais , Fumigação , Inseticidas/química , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Lepidópteros/crescimento & desenvolvimento , Óleos Voláteis/química , Óleos de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...